

ð

030-3037-A
Developer Technical Publications



 Apple Computer, Inc. 1995

ð

ToolServer Reference

Thi d t t d ith F M k 4 0 4

Apple Computer, Inc.
© 1992, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010

Apple, the Apple logo, AppleShare,
A/UX, LaserWriter, Macintosh, MPW,
and Projector are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Finder is a trademark of Apple
Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
HyperCard is a trademark of Apple
Computer, Inc., licensed to Claris
Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Varityper is a registered trademark of
Varityper, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

iii

Contents

Figures, Tables, and Listings v

Preface

How to Use This Manual

vii

Related Documentation viii
Syntax Conventions viii

Terminology viii

Making ToolServer

Chapter 1

Work for You

1-1

Why Use ToolServer? 1-2
Memory Requirements, Performance, and Compatibility 1-2

ToolServer Partition Size 1-2
Performance 1-3
Compatibility 1-3

Chapter 2

Using ToolServer

2-1

Installing ToolServer 2-2
Launching ToolServer 2-2

Launching ToolServer From the Finder 2-2
Launching ToolServer From the MPW Shell 2-2
Startup Scripts 2-3

Moving ToolServer or Its Startup Scripts Out of the ToolServer
Folder 2-3

Combining MPW and ToolServer Startup Scripts 2-4
Quitting ToolServer 2-5
Using ToolServer in the Foreground 2-5
Script Execution 2-6

Aborting Script Execution 2-7
Limitations on Scripts That Run Under ToolServer 2-7
Input, Output, and Diagnostic Files 2-8
Using Alerts to Monitor Script Execution 2-10

Thi d t t d ith F M k 4 0 4

iv

Chapter 3

The RShell Command

3-1

Communicating With ToolServer on a Remote Machine 3-2
Using Files on the Local Machine 3-6

Using the RShell Command 3-7
Command Syntax 3-7
Examples 3-8
Variable Substitution in the RShell Command Line 3-9
Transaction ID of a Request 3-9
Redirecting Output and Abnormal Termination 3-10

Sample Scripts 3-11
A Script That Compiles in the Background 3-11
A Script That Compiles on a Remote Machine 3-12

Shortcuts 3-13

Using Apple Events to Communicate

Chapter 4

With ToolServer

4-1

ToolServer as a Server Application 4-2
Executing a Script by Using Apple Events 4-5
I/O With Apple Events 4-5
Required Events 4-6

Open Application Event 4-6
Open Documents Event 4-6
Print Documents Event 4-6
Quit Event 4-7

Script Events 4-7
Script and Do Script Events 4-7
Output and Diagnostic Output Events 4-8
Abort Event 4-9
Status Event 4-9

Appendix A

Apple Event Support in the MPW Shell

A-1

Appendix B

ToolServer Files and Variables

B-1

ToolServer Files B-2
ToolServer Variables B-3

Index

IN-1

v

Figures, Tables, and Listings

Chapter 2

Using ToolServer

2-1

Table 2-1

ToolServer menu selections 2-6

Table 2-2

Valid MPW built-in commands for scripts 2-7

Table 2-3

Files defined by

BackgroundOut

 and

BackgroundErr

2-10

Listing 2-1

Sample startup script 2-4

Listing 2-2

Sample script 2-11

Chapter 3

The RShell Command

3-1

Figure 3-1

Sharing Setup control panel 3-3

Figure 3-2

Users & Groups control panel 3-3

Figure 3-3

New User document 3-4

Figure 3-4

Enabling program linking to ToolServer 3-4

Figure 3-5

PPC Browser dialog 3-5

Figure 3-6

Program linking dialog 3-6

Listing 3-1

Output of RShell -status option 3-9

Listing 3-2

Background compile script 3-12

Listing 3-3

Remote compile script 3-13

Chapter 4

Using Apple Events to Communicate With ToolServer

4-1

Figure 4-1

 Apple events 4-3

Table 4-1

Apple events 4-4

Table 4-2

Parameters to Script reply 4-8

Table 4-3

Parameters to Do Script reply 4-8

Table 4-4

Parameters to Status event reply 4-9

Appendix B

ToolServer Files and Variables

B-1

Table B-1

ToolServer files B-2

Table B-2

ToolServer variables B-3

Thi d t t d ith F M k 4 0 4

vii

P R E F A C E

How to Use This Manual

This manual explains how you install and launch ToolServer and how you
use it from different environments to run Macintosh Programmer’s Workshop
(MPW) tools and to execute MPW scripts.

ToolServer is a complete tool and script execution environment extracted
from the MPW Shell that you can use to execute time-consuming,
noninteractive tools or scripts in the background or on a remote machine.
Thus ToolServer can run most of the tools and scripts in the MPW tool suite
and most tools and scripts which are written for MPW. The major exceptions
are editor and Projector commands.

ToolServer is primarily designed to be run using Apple events. As such, it can
be run from MPW 3.3 or later using the built-in MPW

RShell

 command and
from third-party applications that include support for ToolServer. You can
also use ToolServer as a foreground application; you specify the scripts to be
executed and obtain the status of executing scripts by choosing the
appropriate File menu items.

This manual is divided into four chapters:

■

Chapter 1, “Making ToolServer Work for You,” describes the ways in which
you can use ToolServer and discusses memory requirements, performance,
and compatibility issues.

■

Chapter 2, “Using ToolServer,” explains how you install, launch, and quit
ToolServer. It also explains how to use ToolServer as a foreground
application, how scripts execute under ToolServer, and ToolServer’s use of
startup, input, output, and diagnostic files.

■

Chapter 3, “The RShell Command,” explains the syntax of the

RShell

command and how you use it from the MPW Shell (version 3.3 or later) to
have ToolServer execute scripts in the background or on a remote machine.

■

Chapter 4, “Using Apple Events to Communicate With ToolServer”
describes the Apple events supported by ToolServer. By using these events
and the routines of the Apple Event Manager, an application can
communicate with ToolServer and use it as an execution environment that
extends the application’s functionality.

Note

Because of ToolServer’s dependence on Apple events, ToolServer runs
only on System 7 or later.

◆

Thi d t t d ith F M k 4 0 4

viii

P R E F A C E

Related Documentation 0

For detailed information on the syntax and use of MPW commands, tools,
and scripts, you need to consult the

MPW Command Reference

. For information
on writing scripts, you need to consult Volume 1 of

MPW: Macintosh
Programmer’s Worskhop Development Environment

 or any third-party book
describing the MPW Shell.

Syntax Conventions 0

The following syntax conventions are used to describe MPW and ToolServer
commands in this manual.

Terminology 0

Although ToolServer is independent of MPW, it does share with MPW a
common set of commands, scripts, and tools. This manual refers to the
commands, scripts, and tools that ToolServer can execute as MPW commands,
MPW scripts, and MPW tools because most readers are familiar with these
from working with MPW and because the behavior of these commands, tools,
and scripts is basically the same in both environments. (Any differences in
behavior are documented in this manual.) However, this does not imply that
ToolServer’s ability to run these commands, scripts, and tools depends upon
MPW running concurrently with ToolServer.

The term

client application

 refers to an application that sends an Apple event
to request a service. The term

server application

 refers to the application that
performs that service. For example, when you use the

RShell

 command
from the MPW Shell to have ToolServer execute a script, the MPW Shell is the
client application and ToolServer is the server application.

literal

Courier text indicates a word that must appear exactly as
shown. Special symbols (

∂

, •, §, &, and so on) must also be
entered exactly as shown.

italics

Italics indicate a parameter that you must replace with
anything that matches the parameter’s definition.

[] Brackets indicate that the enclosed item is optional.

... Ellipses (...) indicate that the preceding item can be repeated
one or more times.

| A vertical bar (|) indicates an either/or choice.

C H A P T E R 1

Making ToolServer

Work for You 1

Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Making ToolServer Work for You

1-2

Why Use ToolServer?

This chapter describes the circumstances under which you might use ToolServer,
explains ToolServer’s use of memory and overall effect on performance, and reviews
compatibility requirements.

Why Use ToolServer? 1

How you use ToolServer depends on your needs. The possibilities include the following:

■

You can run ToolServer as a foreground application that you launch from the Finder.
This allows you to execute scripts in a smaller partition than that required by the
MPW Shell.

■

You can run ToolServer in the background while you continue to work with MPW in
the foreground.

■

You can run ToolServer on a remote machine and use Apple events to communicate
with ToolServer and to specify which scripts are to be executed. Using this process,
you can off-load time consuming build operations to another machine.
Version 3.3 or later of the MPW Shell includes an

RShell

 command that uses
Apple events to communicate with ToolServer. Any other application or development
environment can also use Apple events to communicate with ToolServer.

■

You can use ToolServer to extend the functionality of an application or development
environment.
The application or development environment that needs to make use of an MPW tool
or script uses Apple events to have ToolServer execute that tool or script in the
background or on a remote machine. The existence of ToolServer would be invisible to
the user who would specify his needs by means of a menu command or dialog box.

Memory Requirements, Performance, and Compatibility 1

The following sections describe ToolServer’s memory requirements, how the execution
of scripts in the background or on a remote machine affects performance, and
ToolServer’s dependence on system software, MPW, and other client applications.

ToolServer Partition Size 1

The size of ToolServer’s partition depends on the types of tools run. In general, the
partition required by ToolServer should be 500K smaller than that required by the
MPW Shell. The recommended memory requirement for ToolServer is 1536K. The
minimum requirement is 512K.

If you run all your complex operations with ToolServer and use MPW primarily for
editing, you can launch MPW in a smaller partition.

In the worst case, the combined memory requirements of running ToolServer in the
background and MPW in the foreground might be up to twice that of the MPW Shell.

C H A P T E R 1

Making ToolServer Work for You

Memory Requirements, Performance, and Compatibility

1-3

Performance 1

A script run in the background should not require significantly more central processing
unit (CPU) time than a script run in the foreground. In fact, scripts run by ToolServer
might execute faster than they would under MPW, because much of the user interface
overhead has been removed from ToolServer.

Elapsed time varies depending on the amount of foreground activity and the cost of
context switches. For example, if you run CPU-intensive operations from both the
ToolServer and another application on the same CPU, the elapsed time could increase by
a factor of 2 or more.

If you run ToolServer on a remote machine, performance is affected by network
overhead—that is, whether the files required by ToolServer are available locally or are
read remotely.

Compatibility 1

Because of ToolServer’s dependence on Apple events, ToolServer runs only on System 7
or later. When ToolServer is run under A/UX, it cannot be accessed remotely, that is,
by the

RShell

 command.

MPW version 3.3 or later is required to control ToolServer using Apple events.
ToolServer supports all the routines and interfaces available to tools under the
MPW Shell, including

facess

 and

getenv.

 Tools should run without change in either
the MPW or ToolServer environment. ToolServer and the MPW Shell do differ in the way
they handle input, output, and standard error. These differences are described in the
section “Input, Output, and Diagnostic Files” in Chapter 2.

Any client application that knows how to send the Apple events supported by
ToolServer and how to handle ToolServer’s replies to these events can communicate
with ToolServer in the background or on a remote machine. Version 3.3 of the MPW Shell
is such a client; you can use the

RShell

 command to specify scripts to be run in the
background or on a remote machine.

ToolServer has the signature

'MPSX'

. Files produced by ToolServer are of type

'TEXT'

and creator

'MPS '

 and can be viewed or edited with the MPW editor or other editors
that accept text files. ToolServer also supports the

RShell

 command. This means that
commands can be sent from ToolServer to other ToolServers (possibly on remote
machines), to the foreground MPW Shell (version 3.3 or later), or to itself.

Note

ToolServer takes its input from files. A window represents a file that
may contain unsaved editing changes. In order to make ToolServer
aware of such changes, you must save them to a file.

◆

C H A P T E R 2

Using ToolServer 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Using ToolServer

2-2

Installing ToolServer

This chapter explains how you install, launch, and quit ToolServer. It also explains script
execution under ToolServer and ToolServer’s use of startup, input, output, and
diagnostic files.

Installing ToolServer 2

If you have purchased or plan to use ToolServer with the MPW Shell, please follow the
instructions in the file

READMEFIRST

 to install ToolServer. If you have bought or plan to
use ToolServer with a third-party application or development environment, please read
the documentation provided with that product for installation instructions.

If you plan to use ToolServer to run scripts on a remote machine, you must install and
launch ToolServer on that machine. This cannot be done remotely. You must also enable
communication between the local and the remote machine. For additional information
see the section “Communicating With ToolServer on a Remote Machine” in Chapter 3.

Launching ToolServer 2

You can launch ToolServer from the Finder or from the MPW Shell. The next two
sections describe each of these procedures and also explain the organization and use of
ToolServer’s startup scripts.

Note

If you have purchased or plan to use ToolServer with a third-party
application or development environment, please consult the
documentation provided with your product for instructions on how to
launch ToolServer.

◆

Launching ToolServer From the Finder 2

To launch ToolServer from the Finder, double-click the ToolServer application.

You can also launch ToolServer by double-clicking on the ToolServer script to be run.
To identify a script as a ToolServer document, use the

SetFile

 command to change the
creator of the script to

'MPSX'

, the signature of the ToolServer.

Launching ToolServer From the MPW Shell 2

The syntax of the command used to launch ToolServer from the MPW Shell is:

[

pathname

]ToolServer

 [

script

...]

C H A P T E R 2

Using ToolServer

Launching ToolServer

2-3

After executing the startup script or scripts, ToolServer executes each

script

 specified on
the ToolServer command line.

If ToolServer resides in the current directory, or if you include the directory containing
ToolServer in the

{Commands}

 variable, you can omit the

pathname

 specification.

After ToolServer has finished executing the specified scripts, it remains active until
you quit the application. If you want to execute additional scripts, you can bring
ToolServer to the foreground and specify these by choosing the Execute Script item
from the File menu.

You can launch ToolServer, execute scripts, and quit Toolserver by using the

RShell

command. For additional information see Chapter 3, “The RShell Command.”

Startup Scripts 2

Once launched, ToolServer first executes the

StartupTS

 script. The

StartupTS

 script
then executes the

UserStartupTS

 script and then any script whose name begins with

UserStartupTS

•.

The

StartupTS

 script defines variables used by ToolServer and user scripts. For
additional information about the variables defined in the

StartupTS

 script, see
Appendix B, “ToolServer Files and Variables.” You can write additional scripts
and have these executed as part of the launch process by naming these scripts

UsersStartupTS

•

name

.

If the execution of the

StartupTS

 script results in text written to standard output or
standard error, ToolServer creates the files

StartupTS.out

 and

StartupTS.err

 files
in the same directory as the user’s

StartupTS

 script and writes output and diagnostic
information to these files.

Moving ToolServer or Its Startup Scripts Out of the ToolServer Folder 2

If you are using ToolServer with the MPW Shell, it is assumed that ToolServer is in the
ToolServer folder and that its startup and quit scripts are either in the same folder
as ToolServer or in the Preferences folder. It is recommended that you do not move
ToolServer or its startup and quit scripts out of the ToolServer folder. If quick access
to ToolServer is a problem, you can create an alias for it in the desired location.

If you must place the

UserStartupTS

 and

QuitTS

 scripts in a folder different from
the ToolServer or the Preferences folder, you will need to change the value of the

{PrefsFolder}

 variable in the

StartupTS

 script. For example, if you place
ToolServer’s

UserStartupTS

 script in a folder called

MyStartups

 on the boot
directory, you can include the following command in the

StartupTS

 script to enable
ToolServer to find its user startup scripts.

Set PrefsFolder {Boot}MyStartups:

The

StartupTS

 script also defines the

{MPW}

 variable to be the same as the directory
containing ToolServer. If you move ToolServer to another directory, you need to set the

{MPW}

 variable to the location of the ToolServer folder. For example, if you move

C H A P T E R 2

Using ToolServer

2-4

Launching ToolServer

ToolServer to the desktop and leave the ToolServer or MPW folder on the boot volume,
you would use the following command to redefine ToolServer’s directory:

Set MPW {Boot}MPW:

Combining MPW and ToolServer Startup Scripts 2

If you find it awkward to maintain separate startup scripts for MPW and ToolServer, you
might want to isolate common aspects of the startup process into one script, and to
change MPW’s and ToolServer’s startup process to call this common script. The best way
to do this would be to write a

UserStartupTS•

 script which would call the scripts
common to ToolServer and MPW; a corresponding MPW script, or an alias to the
ToolServer script would also be needed. In the same way, you could also write a
ToolServer startup script that would run any MPW startup script. You can include some
conditional startup code in this combined file to examine the ToolServer variable

{BackgroundShell}

 and to determine which application is running: 1 is ToolServer,
0 is MPW or any other client application.

Listing 2-1 shows a sample ToolServer startup script. This script first executes all
MPW startup scripts in the ToolServer folder and then executes a script called
CommonStartup, if this script exists in the ToolServer folder. The script also
demonstrates the use of the

{BackgroundShell}

 ToolServer variable: if the script
is run from MPW, it executes all ToolServer startup scripts (except itself) instead of
running all MPW startup scripts.

Listing 2-1

Sample startup script

Set myName "{command}"

if {BackgroundShell}

set scriptHead "UserStartup•"

else

set scriptHead "UserStartupTS•"

end

set oldExit "{exit}"

set exit 0

for file in "{MPW}{scriptHead}"

≈

if "{file}" !~ /

≈

{myName}/ # Prevent recursive execution of this

execute "{file}" # script

end

end

`exists "{MPW}"CommonStartup` # Execute CommonStartup if it exists

set exit "{oldExit}"

unset myName scriptHead file oldExit# Remove local variable definitions

C H A P T E R 2

Using ToolServer

Quitting ToolServer

2-5

Quitting ToolServer 2

Once ToolServer is launched, it executes scripts or waits for additional input until one of
the following happens:

■

You bring ToolServer to the foreground and choose Quit from the File menu.

■

You run a script containing the built-in command

Quit.

■

The ToolServer receives a

Quit

 event. For additional information see Chapter 4,
“Using Apple Events to Communicate With ToolServer.”

■

You specify the

-q

 (quit) option to the

RShell

 command. For additional information
see Chapter 3, “The RShell Command.”

ToolServer executes the

QuitTS

 script when asked to quit. ToolServer will also execute
all

QuitTS•

≈

 scripts that exist in ToolServer’s directory (or any other directory if the

QuitTS

 script is modified).

Note

If you are using ToolServer with the MPW Shell, it is assumed that the

QuitTS

 script is either in the same directory as ToolServer or in the
Preferences folder. If you move it to a folder different from these two,
you must change the value of the

{PrefsFolder}

 variable in the

StartupTS

 script to the new location of the

QuitTS

 script.

◆

Using ToolServer in the Foreground 2

It is a matter of convenience whether you use ToolServer in the foreground or in the
background. Using MPW’s

RShell command, described in Chapter 3, or the Apple
events, described in Chapter 4, you can obtain status information about an executing
script, have ToolServer execute additional scripts, or quit ToolServer—all without having
to bring ToolServer to the foreground.

C H A P T E R 2

Using ToolServer

2-6 Script Execution

Whether you launch ToolServer from the MPW Shell or from the Finder, you can bring
ToolServer to the foreground and use the menu items shown in Table 2-1 to execute
scripts and monitor status. ToolServer supports the Apple, File, and Edit menus.

Script Execution 2

Most traditional Macintosh applications provide a document and one or more ways of
opening that document. A ToolServer document is a script, a file of type 'TEXT' that
contains one or more MPW command lines. Unlike the MPW Shell, which creates a
window in which to display and edit that script, when ToolServer opens a script, it
simply executes the specified script.

When using ToolServer as a foreground application or with MPW, you can tell
ToolServer to execute one or more documents in the following ways:

■ Double-click one or more ToolServer documents in the Finder. (A ToolServer
document is a file of type 'TEXT' and creator 'MPSX'.)

■ Drop the document icon or icons onto the ToolServer icon in the Finder.

■ Specify the document name as a parameter when launching ToolServer from the
MPW Shell.

■ Choose Execute Script from ToolServer’s File menu.

Whichever of these methods you use to open a document, ToolServer sets its working
directory to be the directory containing the specified file. The script contained in the file
is then run as if it were executed by the MPW Shell.

Table 2-1 ToolServer menu selections

Menu Item Effect

File Open Status Opens a status window that displays the name of the currently
executing command or tool. When ToolServer is idle, the name
“ToolServer” is displayed in the status window.

Execute Script...
(Command-E)

Displays a standard file dialog box from which you select a script
to execute.

Close Status Closes the status window.

Quit Terminates ToolServer.

Apple About ToolServer... Displays version and copyright information.

Edit (all) Become active when you open a desk accessory or dialog box.

C H A P T E R 2

Using ToolServer

Script Execution 2-7

Note
Third-party application or development environments may provide
additional ways of executing scripts. Please consult the documentation
provided for additional information. ◆

Aborting Script Execution 2
You can abort a script running under ToolServer by bringing ToolServer to the
foreground and entering Command-. (Command-period) from the keyboard. This
command aborts the currently executing script. If scripts are queued waiting to run,
ToolServer executes the next script in the queue.

You can also abort scripts by using the RShell command, described in Chapter 3 or the
'abrt' Apple event described in Chapter 4.

Limitations on Scripts That Run Under ToolServer 2
Scripts can invoke any MPW tool and can contain the MPW built-in commands listed in
Table 2-2. Scripts can also include variables, command aliases, substitution characters,
quotes, wildcard operators, and redirection commands. Projector and editor commands
are not supported; attempts to execute such commands cause ToolServer to set the
Status variable to 1. ToolServer sets the variable BackgroundShell to 1 so that
scripts can determine if they are running under the ToolServer (1) or under the
MPW Shell (0).

* The RShell command is part of ToolServer’s command set, but is only included in version 3.3
or later of the MPW Shell.

Table 2-2 Valid MPW built-in commands for scripts

Alert Directory Exit Newer Shift

Alias Duplicate Export NewFolder ShutDown

Beep Echo Files Parameters Unalias

Begin...End Eject Flush Quit Unexport

Break Else For... Quote Unmount

Catenate Equal Help Rename Unset

Confirm Erase If... Request Version

Continue Evaluate Loop...End RShell* Volumes

Date Execute Move Set Which

Delete Exist Mount SetFile

C H A P T E R 2

Using ToolServer

2-8 Script Execution

It is also a good idea to make your scripts as generic as possible so that they can run in
different contexts without requiring changes. In general, observe the following points in
writing scripts:

■ Do not use command aliases in a script unless they are also defined in that script.

■ A script should not depend on variables being defined globally except for the
pre-defined MPW variables.

■ Place source files in their own folder; don’t put them in the MPW folder.

■ Don’t depend on volumes being available. A script might need to include code that
determines which context it is running in and mounts the required volumes if it is not
running in the same location where the files are placed.

■ If you plan to run a script on a remote machine, avoid commands that put up dialogs.
If the command puts up dialogs, and there are options available for disabling these
dialogs, use these options.

■ Make sure that your script handles error returns; the script can ignore an error, but it
should not abort as a result of an error, except by design.

Input, Output, and Diagnostic Files 2
ToolServer and the MPW Shell differ in the way they handle input, output, and standard
error. This section describes these differences.

The MPW Shell provides tools and scripts with three preopened files: standard input,
standard output, and standard error. The MPW command language allows you to
override these defaults to redirect input/output (I/O). MPW also provides a set of
pseudodevices; these include Dev:Console, Dev:Null, Dev:StdIn, Dev:StdOut,
and Dev:StdErr.

When you run a tool or script in MPW without specifying I/O redirection, standard
input, standard output, and standard error are initially directed to Dev:Console. The
MPW Shell installs a device handler for Dev:Console that captures reads and writes,
and directs them to the frontmost window. This is generally the MPW Shell’s Worksheet
window. ToolServer does not have a worksheet or any window, and thus cannot provide
a console device in the traditional way.

C H A P T E R 2

Using ToolServer

Script Execution 2-9

If you run a tool or script under ToolServer that does not redirect output to a file, output
is sent to either of two files (pseudodevices) introduced by ToolServer to handle this
situation: Dev:Output and Dev:Error. Standard output is sent to Dev:Output, and
standard error is sent to Dev:Error. What ToolServer does next depends on the method
used to execute scripts:

■ If the script is executed by using one of the methods described in “Script Execution”
on page 2-6, ToolServer creates files to hold output and error text. The name and
location of these files depend on the value of the variables BackgroundOut and
BackgroundErr. These variables are not set when ToolServer starts; you can set
them in the UserStartup• script.
ToolServer evaluates the BackgroundOut and BackgroundErr variables and
creates the necessary files when the tool or script first writes to Dev:Output or
Dev:Error. Table 2-3 shows the effect of various settings for these variables on the
files created by ToolServer.
If BackgroundOut and BackgroundErr are not set, the output files are created
in the directory containing the script and are the name of the script with .out
and .err appended respectively. For example, if the script Test in the folder
HD:TestScripts: is executed, the output and error files would be Test.out and
Test.err in the folder HD:TestScripts:.
Files produced by ToolServer are of type 'TEXT' and creator 'MPS '. You can use
the MPW editor or any text editor to view and edit these files.

■ If the script is executed by using Apple events, ToolServer sends the output back to
the client application via an Apple event. Whether the output is buffered or sent
immediately depends on the Apple event used to execute the script. For additional
information see the section “I/O With Apple Events” in Chapter 4. Please note that
the RShell command is an instance of executing a script by using the script
('scpt') Apple event.

▲ W A R N I N G

ToolServer does not support reading from standard input unless it is
redirected from a file or a pipe. Attempts by tools and scripts to read
from Dev:Console, Dev:StdIn, Dev:Output, or Dev:Error
will return an End of File (EOF) error. ▲

C H A P T E R 2

Using ToolServer

2-10 Script Execution

Table 2-3 Files defined by BackgroundOut and BackgroundErr

If ToolServer cannot open the specified output files because they are in use (locked or
already open), it opens a new file and generates a new, unique name by appending an
ordinal number (0,1,2,...) to the specified output filename.

If ToolServer is unable to write to standard error, it will write errors to the log file
ToolServer.Log. This log includes messages about errors that occur during the
processing of Apple events or the creation of the output or error files.

The log file is overwritten each time you launch ToolServer. If you want to save a copy of
the file, you can rename it in your QuitTS script.

▲ W A R N I N G

Tools and scripts can use the I/O redirection facilities of the MPW Shell
language and I/O libraries to read and write files. There is one
important difference between running scripts under the MPW Shell and
running them under ToolServer: The MPW Shell allows tools and scripts
to read the contents of files that have been changed by the editor but
have not yet been saved to disk. ToolServer does not intercept file
system calls and does not allow tools to read from MPW windows. You
must save any changed files before running a tool or script that accesses
these files. ▲

Using Alerts to Monitor Script Execution 2
If you use ToolServer to execute a script locally, you can use the MPW Alert command
to send messages about script execution.

As the sample script in Listing 2-2 shows, you can include the MPW Alert command
(which uses the Notification Manager) to display a message. Otherwise, ToolServer runs
unobtrusively in the background, directing diagnostic information to standard error. If
an error occurs while attempting to open the standard error file or during initialization,
ToolServer writes error information to the file ToolServer.log.

Variable Setting Effect

BackgroundOut none ToolServer creates a file named script.out, where script
is the name of the input script. The file is created in the
directory containing the executing script.

filename ToolServer creates a file named filename.

DEV:NULL ToolServer does not create an output file.

BackgroundErr none ToolServer creates a file named script.err, where script
is the name of the input script. The file is created in the
directory containing the executing script.

filename ToolServer creates a file named filename.

DEV:NULL ToolServer does not create an error file.

C H A P T E R 2

Using ToolServer

Script Execution 2-11

Listing 2-2 shows a sample script used to do a build. The build commands output by the
Make tool are written to the file domake.cmd and executed. Note that the sample script
includes some error handling.

■ If any of the build commands fail to execute, the script displays an alert box
specifying that the make failed and gives the name of the file containing diagnostic
information.

■ If the build succeeds, standard output and standard error are written to the file
domake.results, and the script displays an alert box specifying the name of the file
containing this information.

Listing 2-2 Sample script

Directory 'HD:MPW:Demo:'

Begin

echo "Beginning Build"

date

make -f Demo.make > domake.cmd

set done 1

set echo 1

domake.cmd || begin; alert 'Make failed!!!'; unset done;end;

set echo 0

date

End ∑ 'HD:MPW:Demo:domake.results'
If {done}

Alert "Build is complete.∂nSee HD:MPW:Demo:domake.results"
Else

Alert "Build had errors.∂nSee HD:MPW:Demo:domake.results"
End

Quit

Note
If you are using version 3.3 or later of MPW, you can use the
TraceFailures variable to obtain more detailed information about the
execution of a script. Setting this variable to TRUE, causes a message to
be sent to standard error, which identifies the location of the failure
when a script terminates abnormally. This message is similar in form to
compiler diagnostic messages. ◆

C H A P T E R 3

The RShell Command 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

The RShell Command

3-2

Communicating With ToolServer on a Remote Machine

This chapter explains how you enable communication between ToolServer and the MPW
Shell residing on different machines, describes the syntax of the

RShell

 command,
which is used to send a command line to be executed by ToolServer in the background or
on a remote machine, includes two sample scripts, and discusses the limitations on
scripts that are run on remote machines.

You need to read this chapter if

■

you are using version 3.3 of the MPW Shell, and want to use the

RShell

 command to
have the MPW Shell on a local machine send a script to be executed by ToolServer in
the background on your local machine or on a remote machine

■

you need to make use of Apple events to have ToolServer run a tool or script from a
development system other than MPW and are interested in an example of a
command-line interface to the Apple event mechanism

Version 3.2 of MPW does not support the

RShell

 command.

Communicating With ToolServer on a Remote Machine 3

Before you can use the

RShell

 command to execute a script on a remote machine, you
must enable ToolServer or MPW on a local machine to communicate with ToolServer on
a remote machine. The following tutorial describes the procedure you need to follow to
do this. For additional information about remote linking and file sharing, see the user
documentation provided for System 7.

1. Install ToolServer on the remote machine.

2. Open the Sharing Setup control panel on the remote machine and turn program
linking on. Figure 3-1 shows the Sharing Setup control panel. The status panel for
program linking indicates that it is turned on. The status panel for File Sharing also
shows that File Sharing is on, which you may also want to enable.

C H A P T E R 3

The RShell Command

Communicating With ToolServer on a Remote Machine

3-3

Figure 3-1

Sharing Setup control panel

3. Open the Users & Groups control panel on the remote machine and choose
New User from the File menu. A New User icon is added to the Users & Groups
control panel as shown in Figure 3-2.

Figure 3-2

Users & Groups control panel

C H A P T E R 3

The RShell Command

3-4

Communicating With ToolServer on a Remote Machine

4. Double click the New User icon. When the New User document appears, enter a
user password and enable program linking by clicking the Program Linking check
box. See Figure 3-3 for an example of an open New User document.

Figure 3-3

New User document

5. Select the ToolServer application and choose Sharing from the File menu. A dialog
like the one shown in Figure 3-4 is displayed. Make sure the check box “Allow
Remote Program Linking” is checked.

Figure 3-4

Enabling program linking to ToolServer

C H A P T E R 3

The RShell Command

Communicating With ToolServer on a Remote Machine

3-5

6. Launch ToolServer on the remote machine by double-clicking the ToolServer icon.

If you have followed the preceding steps, you are now ready to send a script from the
local machine to be executed by ToolServer on the remote machine.

7. Return to the local machine. Launch MPW if you have not already done so and
create a new file called

RemoteScript

. Type the following commands into the new
file and save the file.

beep
beep
beep
echo "done"

8. Enter the following command to send the contents of

RemoteScript

 to be
executed by ToolServer on the remote machine.

RShell < RemoteScript

9. Because no target was specified with the

RShell

 command, the PPC Browser
dialog shown in Figure 3-5 is displayed. When invoked by the

RShell

 command,
the PPC Browser displays all items that respond to ToolServer Apple events and
that have been launched. Select the zone, machine, and application to which the
script is to be sent and click OK.

Figure 3-5

PPC Browser dialog

Note that the PPC Browser dialog only displays the ToolServer on a specific machine,
not all ToolServers in the zone. If you want to install multiple ToolServers on one
machine, you must rename them so that they have unique names; for example,
ToolServer1, ToolServer 2, and so on.

C H A P T E R 3

The RShell Command

3-6

Communicating With ToolServer on a Remote Machine

10. When the dialog box shown in Figure 3-6 is displayed, click Registered User,
specify your password, and then click OK.

Figure 3-6

Program linking dialog

11. The script is now executed on the remote machine. If you are close enough to the
remote machine, you should hear three beeps. You should also see the “done”
message echoed back to the currently active MPW window on your local machine.

Using Files on the Local Machine 3

The preceding tutorial assumes that any source files needed by the executing script are
located on the remote machine. If the source files are located on the local machine, you
will also need to do the following.

1. Use the Users & Groups control panel to turn file sharing on for the local machine.

2. Use the Sharing item in the Finder File menu on the local machine and specify the
appropriate privileges for the folder(s) containing the files you need to access.

3. Include the

Choose

 command in the executing script to log on to these folders
(treated as AppleShare volumes). The

Choose

 command must precede any command
that access these files. For example,

Choose LocalZone:LocalMachine:Volume -u Joanna Bujes -pw boo

The

-u

 option makes the remote user a registered user of your local machine. The

-pw

option specifies the user’s password.

If it is possible for you to respond to user dialogs on the remote machine because the two
machines are physically close, you can also use the Chooser to log on to the folders on
the local machine.

C H A P T E R 3

The RShell Command

Using the RShell Command

3-7

Using the RShell Command 3

This section describes the syntax and use of the

RShell

 command.

Command Syntax 3

The syntax of the

RShell

 command is:

RShell

 [[

–f

|

–b|–r

target]

 [

-q

] [

command

|

 <

script

]]

|

[

-status

|

–c

id

 |

–k

id

] [>

output

] [

≥

error

]

–f

This option sends the Script event to the MPW Shell (version 3.3 or later) running on the
same machine where the

RShell

 command is executed. If the

RShell

 command is
included in a script that is executed by ToolServer, and the MPW Shell has not been
launched, this option launches it.

–b

This option sends the Script event to be executed in the background by ToolServer
running on the same machine where the

RShell

 command is executed. If the

RShell

command is executed by the MPW Shell and ToolServer has not been launched, this
option launches it.

–r [

target

]

This option sends the command to the application specified by

target

. The application
must already be running. The

target

 parameter takes the form [[

zone

:

]

server

:]

ApplicationName.

 The application is either ToolServer or the MPW Shell. The application
name is case sensitive.

–q

This option quits ToolServer. If

command

 follows, the specified command is executed first.

command

This parameter is a string specifying the command to be executed. The command you
specify is syntactically equivalent to an MPW command line. If you omit this parameter,

RShell

 reads from standard input.

If you use the

-r

 option, the specified script or tool is assumed to reside on the remote
machine. Note that ToolServer does not support all MPW built-in commands; see
Table 2-3, in Chapter 2 for a list of valid commands.

script

This parameter specifies the name of a script on the local machine whose contents are
redirected to ToolServer. If the script name contains a space, it must be quoted.

-

status

This option displays information about scripts that are currently running or about
pending RShell requests—scripts waiting to be run. Only those RShell requests that you
have initiated are displayed in the status report. Standard input is ignored.

C H A P T E R 3

The RShell Command

3-8

Using the RShell Command

-c

id

This option closes the files associated with the request whose transaction ID is id.
Standard input is ignored. See “Transaction ID of a Request” on page 3-9 and
“Redirecting Output and Abnormal Termination” on page 3-10 for more information.

-k id
This option aborts the script whose transaction ID is id. Standard input is ignored. See
“Transaction ID of a Request” on page 3-9 and “Redirecting Output and Abnormal
Termination” on page 3-10 for more information.

output
This parameter is the name of the file to which standard output is redirected. See “Input,
Output, and Diagnostic Files” in Chapter 2 and “Redirecting Output and Abnormal
Termination” on page 3-10 for additional information.

error
This parameter is the name of the file to which standard error is redirected. See “Input,
Output, and Diagnostic Files” in Chapter 2 and “Redirecting Output and Abnormal
Termination” on page 3-10 for additional information.

Note
The RShell command reads from standard input if neither command,
-k, -c, -status, nor -q is specified.

If you don’t specify any of the -f, -b, or -r options to select a target
application, an interactive window called the PPC Browser is opened to
allow you to select the application to receive the command. Figure 3-5
shows a sample PPC Browser. ◆

Examples 3

The following examples illustrate the use of the RShell command:

RShell -q # quit ToolServer

RShell "beep" # execute the beep command

RShell "beep" -q # execute the beep command and quit

RShell < myscript # execute the contents of the file

myscript

The command

RShell < myscript

or

RShell < "my script"

C H A P T E R 3

The RShell Command

Using the RShell Command 3-9

redirects the contents of a file named myscript, to be found in the current directory for
the local (sending) machine, to the RShell command. The command

RShell MyScript

or

RShell "My Script"

sends the specified script name to ToolServer, which locates the script in ToolServer’s
current directory.

Variable Substitution in the RShell Command Line 3
The type of quotes (single or double) you use to delimit the command string you specify
for the RShell command determines where variable substitution occurs.

If you specify the command

RShell -b "echo {BackgroundShell}"

the sending application (usually the MPW Shell) evaluates {BackgroundShell} and
sends the resulting command to ToolServer. If you specify the command, because of the
hard quotes ('), the command line is sent as is to ToolServer, which evaluates
{BackgroundShell} and performs variable substitution.

RShell -b 'echo {BackgroundShell}'

Transaction ID of a Request 3
When you specify a script, tool, or command to be sent by the RShell command, the
command assigns each request a transaction ID and places it in a queue. Multiple
requests to one or more applications might be outstanding at any time. If you use the
-status option to the RShell command, it displays information about requests still in
the queue that were issued by your application. Listing 3-1 shows the output of the
-status option.

Listing 3-1 Output of RShell -status option

rshell -status

ID Request Current Command Server

-- ------- --------------- ------

 1 makescript link ToolServer

 2 BuildScript duplicate AZone:AMachine:ToolServer

 3 TestScript ToolServer

C H A P T E R 3

The RShell Command

3-10 Using the RShell Command

In the status shown in Listing 3-1, two requests are active on two different ToolServers.
The current command column is empty for request 3; a blank current command field
usually indicates that the script is queued, waiting for ToolServer to complete a
previous script.

The transaction ID of a script appears in the first column of the status display. You can
use this ID with the RShell -k or -c option as described in the next section.

Redirecting Output and Abnormal Termination 3
When you use the RShell command to send a command or script, the RShell
command keeps open its standard output and standard error files in case the command
or script directs output to Dev:Output or Dev:Error respectively. Thus files are kept
open for each outstanding RShell request. For example, the following command opens
outputfile and errfile, and then writes output and diagnostic output to these files.
The sending application (ToolServer or the MPW Shell) closes these files when the
script completes.

RShell 'myScript > dev:output ≥ dev:error' > outputfile ≥ errfile

■ If you do not specify output redirection with the RShell command, and the sending
application is ToolServer, output is sent to wherever the issuing ToolServer’s
Dev:Output and Dev:Error are currently directed.

■ If you do not specify output redirection with the RShell command, and the sending
application is the MPW Shell, output is sent to the window in which the RShell
command (or the script containing it) was executed.
This can cause a problem when more than one process attempts to write to the same
window or file. For example, you execute an RShell command from the Worksheet
and do not specify redirection. You then choose the Check Out item from the Projector
menu and find that you are not able to. The following error message is displayed:

###ExperShell-a15 - Unable to open "Athena:MPW:Worksheet"
The read/write permission of only one access path to a file
can allow writing (OS error -49)

The cause of the error message is that both the RShell command and the Check Out
item from the Projector menu redirect output to the same window, in this case the
Worksheet window. If this happens to you, you can either choose the menu item from
another window or you can use the -k id option of the RShell command to kill the
process.The same situation can arise if you execute a number of RShell commands
from the same window without specifying redirection. If you find yourself in this
situation, you can use the -k id option to kill the contending processes. Best of all, you
can avoid trouble by always redirecting RShell command output to a file.

If a script terminates abnormally—due, for example, to a broken network connection or
to a tool that crashes—RShell’s standard output and standard error files might remain
open. In this case, you need to close the standard output and standard error files
associated with the request by using the -c id option of the RShell command, where
id specifies the transaction ID of the request.

C H A P T E R 3

The RShell Command

Sample Scripts 3-11

The -c id option is not intended for use with an executing script; it is provided to allow
you to cleanup output files when the connection between the client (the MPW Shell or
the ToolServer that ran the RShell command) and the server (the MPW Shell or the
ToolServer that received and processed the command) has been broken. If a script is
running, do not use the -c id option. Kill the process instead with the
-k id option.

▲ W A R N I N G

It is strongly recommended that you do not use the -c id option on a
running ToolServer process or on a ToolServer process awaiting
execution. Doing so makes it impossible to kill the process from the
sending application; it can only be stopped (it must start executing) from
the ToolServer executing it by aborting the process with a
Command-period. ▲

Sample Scripts 3

This section describes the use of the RShell command to execute scripts. It describes
two scripts: one that sends compilations to ToolServer running in the background and
one that sends compilations to ToolServer running on a remote machine.

A Script That Compiles in the Background 3
The script shown in Listing 3-2 sets the current directory, searches the directory for files
terminating in .c, and compiles each such file.

If the compile does not terminate normally, an RShell command within the script sends
MPW an Alert command that specifies the name of the file that did not compile
successfully. When the script is done, another RShell command sends MPW an Alert
command that displays the message “Done.”

The RShell command used to send the script shown in Listing 3-2 to ToolServer is

RShell -b "Background Compile"

▲ W A R N I N G

Under low memory conditions, using the -b option to the RShell
command may launch ToolServer in a partition smaller than the one
requested in ToolServer’s size resource. Subsequent operations
performed within ToolServer might then fail because of insufficient
memory. The notification given varies with the particular tool that has
failed. In extreme cases the Apple events mechanism might not have
enough memory to reply to the MPW Shell. In that case the -status
option to the RShell command will show that operations are
still pending. ▲

C H A P T E R 3

The RShell Command

3-12 Sample Scripts

Listing 3-2 Background compile script

Set Exit 0

Directory "hd:ToolServer Demo"

For file In ≈.c
(Evaluate "{file}" =~ /(≈) 1.c/) > Dev:Null # set { 1} to the

part of the name

that is to the

left of ".c"

c "{file}" -o "{ 1}".o ≥ "{ 1}".err
If {status} != 0

RShell -f "Alert 'Errors in ∂"{file}∂"'"
End

End

RShell -f "Alert Done"

Set Exit 1

A Script That Compiles on a Remote Machine 3
Before you can use the RShell command to communicate with ToolServer on a remote
machine, you need to configure the local and remote machines according to the
instructions given in “Communicating With ToolServer on a Remote Machine” on
page 3-2.

Like the script shown in Listing 3-2, the script shown in Listing 3-3 sets the current
directory, searches the directory for files ending in .c, and compiles them.

The RShell command used to send the script shown in Listing 3-3 to ToolServer is

rShell -r "TSZone:TSServer:ToolServer" < "Remote Compile" ∑ MyOut

where Remote Compile is the script to be executed. TSZone and TSServer are
respectively the zone and server where ToolServer resides.

If you compare the scripts shown in Listing 3-2 and Listing 3-3, you will notice that the
RShell commands in Listing 3-2 have been replaced with Echo commands in
Listing 3-3. This is because RShell commands in a remote script will cause program
linking dialogs to be generated on the remote machine. This will cause problems if the
user cannot see the screen of the remote machine and cannot respond to the dialogs. In
such a case, you must pass all status information back to the local machine using
standard output or standard error.

C H A P T E R 3

The RShell Command

Shortcuts 3-13

Listing 3-3 Remote compile script

Set Exit 0

For file In "ToolServer Demo:"≈.c # find all files whose names end in

 # ".c"

(Evaluate "{file}" =~ /(≈) 1.c/) > Dev:Null # set { 1} to the part of
the name that is to

the left of ".c"

c "{file}" -o "{ 1}".o ≥ "{ 1}".err
If {status} != 0

echo "Errors in ∂"{file}∂""
End

End

echo "Done!"

Set Exit 1

The output of the RShell command used to send the script to the remote machine can
be directed to a window on the local machine as follows:

RShell -r "TSZone:TSServer:ToolServer" < "Remote Compile" ∂
∑ Remote.log

▲ W A R N I N G

If you are issuing several RShell commands at the same time, it is best
to redirect output from these commands to separate log files or
windows. The problems that can arise if you do not are described in
“Redirecting Output and Abnormal Termination” on page 3-10. ▲

Shortcuts 3

Though the RShell command provides a great deal of power and flexibility to script
writers, it can be somewhat complicated to use. An MPW Shell startup file named
Userstartup•ToolServer (in the Examples folder) simplifies using ToolServer from
the MPW Shell. The startup file provides

■ a command-key definition (Command-\) that sends the current line or selection to
ToolServer for execution

■ extensions to the build menu for doing background builds

■ a sample script that synchronizes variables and aliases between the MPW Shell
and ToolServer

A Quit•ToolServer script, also in the Userstartup•ToolServer file, checks for
outstanding RShell requests before exiting MPW.

C H A P T E R 4

Using Apple Events
to Communicate

With ToolServer 4

Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

4-2

ToolServer as a Server Application

This chapter describes ToolServer’s support of Apple events. An Apple event is
a high-level event that adheres to the Apple Event Interprocess Messaging Protocol
(AEIMP). By using the routines of the Apple Event Manager your application can use
Apple events to communicate with ToolServer in a standard way.

A transaction involving Apple events is initiated by a client application, which sends an
Apple event to request a service. The application providing the service is called a server
application. For complete information about sending and processing Apple events, see
the Apple Event Manager chapter of

Inside Macintosh,

 Volume VI.

You should read this chapter if you need to extend the functionality of your application
by making use of ToolServer’s execution environment. See the following examples.

■

A client application has a text editor but no development environment. The client can
use Apple events to send text input (like a

BuildProgram

 or

Link

 command) to
ToolServer, which can execute the command and return output as the client directs.

■

A client application consists of a development environment that has no resource
compiler or decompiler. The client can use Apple events, triggered perhaps by a menu
selection, to send

Rez

 and

DeRez

 commands to ToolServer.

Apple events can be sent locally or across a network. The Users & Groups control panel
provides an interface for controlling Apple events access across the network. Multiple
users can use a single ToolServer running on a remote server; the users share the
ToolServer state such as shell variables, aliases, and the working directory. Complete
information about the configuration required to enable remote communication is
provided in the section “Communicating With ToolServer on a Remote Machine” in
Chapter 3.

ToolServer as a Server Application 4

This section introduces the three kinds of Apple events that are understood by
ToolServer. Some of these events are documented in other publications; this chapter
supplies additional information about how ToolServer handles these events. Events that
are specific to ToolServer and MPW are only documented in this chapter.

ToolServer supports the following kinds of events:

■

 required events
The four events that an application must handle to support Apple events are Open
Application, Open Documents, Print Documents, and Quit. These events are defined
in the

 Apple Event Registry: Standard Suites

.

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

ToolServer as a Server Application

4-3

■

miscellaneous events
ToolServer supports the '

dosc

' (do script) event, which is defined in the
Miscellaneous suite of the

Apple Event Registry: Standard Suites

.

■

MPW custom events
ToolServer uses the Script (

'scpt'

), Output (

'outp'

), Diagnostic (

'diag'

), Status
(

'diag'

), and Abort (

'abrt'

) events to control script execution.

Figure 4-1 shows the possible flow of events between a client application and ToolServer.
Because you cannot use a high-level event to launch ToolServer, it must already be
running when your application sends an Apple event.

The Apple Event Manager defines a standard reply that includes an error number
('

errn

') and an error string ('

errs

'). Events may also include additional parameters in
the reply. These parameters are defined along with the events in the following sections.

Note

You can send Apple events to the MPW Shell as well as to ToolServer,
but only ToolServer returns output. For additional information, see
Appendix A, “Apple Event Support in the MPW Shell.”

◆

Figure 4-1

 Apple events

reply to events

'output'

'diag'

'dosc' or 'scpt'

'stat'

'abrt'

Client

Application

ToolServer

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

4-4

ToolServer as a Server Application

Table 4-1 lists the events supported by ToolServer. The sections “Required Events” on
page 4-6 and “Script Events” on page 4-7 describe in detail the attributes and parameters
for the events listed in Table 4-1.

Table 4-1

Apple events

ID Class Effect

'

oapp

' '

aevt

' Finder sends the Open Application ('

oapp

') event when ToolServer is
launched and no documents are selected to be executed or printed. The
reply contains

 'errn' == noErr.

 This event is included because it
is a required event. It would normally be used by an application that
opens an untitled document in response to the user’s double-clicking the
application. Because ToolServer does not create new documents, it is not
affected by this event.

'

odoc

' '

aevt

' The Open Documents (

'odoc'

) event contains a list of files that ToolServer
is to open. ToolServer treats these documents as scripts and executes them.
Because the client application does not expect parameters in the reply
beyond an error number and error string, scripts executed by using this
event do not use Apple events to return output. All input and output must
be through files. For additional information see the section “I/O With
Apple Events” on page 4-5.

'

pdoc

' '

aevt

' The Print Documents (

'pdoc'

) event causes ToolServer to execute the
print tool to print the specified documents. As in the Open Documents
case, the event returns no output to the client application.

'

quit

' '

aevt

' The Quit (

'quit'

) event terminates ToolServer. If ToolServer is executing
a tool or script, the Quit event is queued until the script or tool completes.
As required by the Apple Event Manager, ToolServer replies to the event
and then proceeds with the Quit event. Because quitting involves a number
of steps, including the execution of a script, it is possible for the Quit event
to fail even though a good status has been returned.

'

dosc

' '

misc

' The Do Script

('dosc'

) event sends an MPW command line to be
executed by ToolServer. This event causes ToolServer to buffer script
output and return it as the direct parameter of the reply. For additional
information see the section “I/O With Apple Events” on page 4-5.

'

scpt

 ' '

MPS

 ' The Script (

'scpt'

) event sends an MPW command line to be executed by
ToolServer. This event returns a series of events containing the text written
to

Dev:Output

,

Dev:Error

, or Dev:Console. See “I/O With Apple
Events” on page 4-5 for additional information.

'

outp

 ' '

MPS

 ' The Output (

'outp'

) event returns standard output to the client
application.

'

diag

' '

MPS

 ' The Diagnostic (

'diag'

) event returns diagnostic output (standard error)
to the client application.

'

stat

 ' '

MPS

 ' The Status (

'stat'

) event is used by the client application to determine
the current status of ToolServer.

'

abrt

 ' '

MPS

 ' The client application uses the Abort (

'abrt'

) event to abort the currently
executing script.

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

Executing a Script by Using Apple Events

4-5

Executing a Script by Using Apple Events 4

In general there are two ways to execute a script by using Apple events:

■

by sending the Open Documents event to ToolServer
If you use this method, ToolServer sets the working directory to the one containing
the script.

■

by sending ToolServer either the Script event or the Do Script event
These events are designed so that development environments such as the MPW Shell
or other applications can send MPW commands or scripts to ToolServer and receive
the output back. ToolServer’s working directory is not changed before running the
script in this case.

Rather than receiving a specific file or document, ToolServer gets a buffer of text to be
interpreted as an MPW Shell command line or script. ToolServer interprets the text as if
it had been entered interactively to the MPW Shell. Since the MPW Shell is designed to
“read” scripts to execute them, ToolServer creates a temporary file to contain the text and
saves this file in the folder specified by the

{TempFolder}

 variable, which is set to the
system’s temporary folder by default. You can have ToolServer save the file elsewhere by
resetting the value of this variable in your

UserstartupTS

 file.

ToolServer responds to one script event at a time.

'odoc'

,

'pdoc'

,

'quit'

,

'dosc',
and 'scpt' events received while ToolServer is running a script are queued until that
script completes. ToolServer responds to 'stat', 'abrt', and 'oapp' events even if
it is handling a script or print event.

I/O With Apple Events 4

If you use the Script event or the Do Script event, you can have the output returned via
the Apple event mechanism by directing output to the pseudofilename Dev:Output
and diagnostic messages to Dev:Error. ToolServer treats anything directed to
Dev:Console (specifically or by default) as if it were written to Dev:Output. The
pseudofilenames Dev:Output and Dev:Error are used exclusively by ToolServer.

How ToolServer returns output to an application by using an Apple event and directing
output to Dev:Output and Dev.Error depends on the event used to execute a script:

■ If the application uses the Script event ('MPS ' 'scpt'), the sender should use the
send mode kAEQueueReply. The sender is then able to receive events while waiting
for the ToolServer reply. ToolServer generates a series of output and diagnostic output
(error) events. These events contain the characters written to Dev:Output and
Dev:Error respectively. The reply to the Script event itself contains the final MPW
status (value of the MPW {status} variable).

■ If the application uses the Do Script event ('misc' 'dosc'), ToolServer buffers
output and diagnostic output. When the event is completed, ToolServer returns

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

4-6 Required Events

these buffers as part of the reply to the event. Output is placed in the direct object
parameter of the reply, and diagnostic output is placed in the 'diag' parameter of
the reply.
Because Apple event messages are currently limited to 64 KB bytes, the combined
total of these buffers must be slightly less than this. The reply to the 'dosc' event
also contains the final MPW status value and a system error value. If the message
buffer overflows, ToolServer returns the first 64 KB bytes of data and the system error
message indicates bufferIsSmall (osErr = -607).

Required Events 4

The Apple Event Registry: Standard Suites defines four required events: Open Application,
Open Documents, Print Documents, and Quit. This section describes the attributes and
parameters used by these events.

Open Application Event 4
Message class: 'aevt'

Message ID: 'oapp'

Parameter Keyword: no parameters

The reply contains 'errn' == noErr. You cannot use this event to launch ToolServer.

Open Documents Event 4
Message class: 'aevt'

Message ID: 'odoc'

Parameter Keyword: '----'

Parameter Type: 'list'

Parameter Data: a list of documents to open

Scripts executed via the Open Documents event do not return output via Apple events.
All input and output must be through files. Refer to the section “I/O With Apple
Events” on page 4-5 for additional information.

Print Documents Event 4
Message class: 'aevt'

Message ID: 'pdoc'

Parameter Keyword: '----'

Parameter Type: 'list'

Parameter Data: a list of documents to print

As in the Open Documents case, no output is returned to the sender.

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

Script Events 4-7

Quit Event 4
Message class: 'aevt'

Message ID: 'quit'

Parameter Keyword: no parameters

Script Events 4

You use script events, which include one miscellaneous event and four MPW events, to
execute a script, return status information, return output and diagnostic information,
and abort a script. The following sections describe the attributes and parameters of these
events as well as the reply returned by ToolServer.

Script and Do Script Events 4
The Script and Do Script events are used to execute scripts. The Do Script event is
defined in the Apple Event Registry: Standard Suites; the Script event is an MPW-specific
event. Both events are shown below:

Message class: 'misc'

Message ID: 'dosc'

Parameter Keyword: '----'

Parameter Type: 'TEXT'

Parameter Data: string containing command line

Message class: 'MPS '

Message ID: 'scpt'

Parameter Keyword: '----'

Parameter Type: 'TEXT'

Parameter Data: string containing command line

TransactionID: optional

Both events contain a single parameter of type 'TEXT' that is a string containing a
command line to be executed. This line can specify a single tool or script, or it can
contain a series of command lines separated by semicolons or return characters.

When sending the 'scpt' or 'dosc' event, the sender can specify an optional
transaction ID to identify the event. The sender can use the transaction ID later to
obtain the status of this script event, or to abort it.

The Script event (' MPS ', 'scpt') can return 'diag' and 'outp' events containing the
text written to Dev:Output, Dev:Error, or Dev:Console. These events are defined in
the next section, “Output and Diagnostic Output Events.” The Do Script event ('misc',
'dosc') will buffer this data, and return it in the Apple event reply.

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

4-8 Script Events

The Apple event reply contains the parameters shown in Table 4-2 and Table 4-3. The
'errn' parameter contains any system errors reported while handling the event or
constructing the reply. The 'stat' value contains the MPW status variable set as a result
of running the script. The direct ('----') and 'diag' parameters are set in the Do Script
event to contain standard output and standard error (diagnostic output) respectively. If
no output or error data is produced, these parameters are not set.

Table 4-2 Parameters to Script reply

Table 4-3 Parameters to Do Script reply

Output and Diagnostic Output Events 4
These events are used to return standard output ('outp') and standard error ('diag') to
the sender of a Script event. The transaction ID of the event matches the transaction ID
specified in the Script event that resulted in these events.

Message class: 'MPS '

Message ID: 'diag'

Parameter Keyword: '----'

Parameter Type: 'TEXT'

Parameter Data: a stream of characters

TransactionID: same as that of scpt event

Message class: 'MPS '

Message ID: 'outp'

Parameter Keyword: '----'

Parameter Type: 'TEXT'

Parameter Data: a stream of characters

TransactionID: same as that of scpt event

The libraries and device handlers might buffer output, so these events can contain an
arbitrary amount of text (up to 64 KB bytes). The C stdio library allows you to change
the size of its buffers.

Parameter Type Description

'errn' typeLongInteger system errors

'stat' typeLongInteger MPW status value

Parameter Type Description

'errn' typeLongInteger system errors

'stat' typeLongInteger MPW status value

'----' typeChar standard output

'diag' typeChar diagnostic output

C H A P T E R 4

Using Apple Events to Communicate With ToolServer

Script Events 4-9

Abort Event 4
The Abort event aborts the currently executing script.

Message class: 'MPS '

Message ID: 'abrt'

Parameter Keyword: no parameters

TransactionID: optional

If the sender of the event does not specify a transaction ID, ToolServer aborts the
currently executing script as if the user had entered a Command-. from the keyboard.
If a transaction ID is specified, this ID and the sender of this event must match the ID
and sender of the currently executing script. The script is aborted only if these two
parameters match. The error number ProcNotFound is returned if no abort occurred.

Status Event 4
The Status event determines the current status of the ToolServer.

Message class: 'MPS '

Message ID: 'stat'

Parameter Keyword: no parameters

TransactionID: optional

If the transaction ID and sender of the status event match those of the currently
executing script, or if no transaction ID is specified, the reply 'errn' is set to noErr(0),
and the four additional parameters listed in Table 4-4 are returned.

Table 4-4 Parameters to Status event reply

If the transaction ID does not match that of the currently executing script, the error
number ProcNotFound is returned. If the shell is not running a script, ToolServer sets
the error number to noErr, and returns no other parameters.

Parameter Type Description

'what' typeChar file name of the script in progress

'pos ' typeLongInteger number of characters read from the file

'size' typeLongInteger the size of the file

'who ' typeChar the name of the current command or tool

A-1

A P P E N D I X A

Apple Event Support in the

MPW Shell A

Version 3.3 or later of the MPW Shell supports the Apple events described in
Chapter 4 of this manual. However, due to the interactive nature of the MPW
Shell and the design of the MPW Shell and the editor, this support is
somewhat limited compared to the support provided by ToolServer. The
differences and limitations are:

■

The MPW Shell’s reply to an Apple event is merely an acknowledgment
that the event was received properly; it does not indicate the success or
failure of the request. The reason for this is that the MPW Shell replies to
the event before it processes the event.

■

Because the MPW Shell replies immediately to script events, the Abort and
Status events function only when the transaction ID is not set (specified as

kAnyTransactionID

). The MPW Shell does not match the sender of this
event with the sender of the script.

■

Because the MPW Shell has a console, it does not support the

Dev:Output

or

Dev:Error

 devices nor return console output to the sender of a
script event.

■

The MPW Shell supports the four required events (Open Application,
Open Documents, Print Documents, and Quit). However, the Open
Documents event opens the files in the editor and does not execute a script,
as is the case with ToolServer.

■

The MPW Shell accepts the Script and Do Script events. However, it replies
immediately and then executes the script as if the user had run the script
via a user-defined menu item. Standard output and standard error default
to the console, which is generally the frontmost window. The error number
in the reply indicates that the script was successfully received, not the
success or failure of the script itself.

Version 3.3 of MPW can also communicate with ToolServer by using the

RShell

 command that has been added to both the MPW Shell and
ToolServer. This command is described in Chapter 3, “The RShell Command.”

Figure A-0
Listing A-0
Table A-0

Thi d t t d ith F M k 4 0 4

B-1

A P P E N D I X B

ToolServer Files and Variables B

This appendix provides summary information about the files created by
ToolServer and the variables used by ToolServer.

Figure B-0
Listing B-0
Table B-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X B

ToolServer Files and Variables

B-2

ToolServer Files

ToolServer Files B

Table B-1 describes the files included with ToolServer and the files ToolServer
creates during execution.

Table B-1

ToolServer files

File Use

StartupTS

The contents of this script are executed at launch time. The script
sets the default value of ToolServer variables, calls the script

UserstartupTS

, and then calls any additional user-defined startup
scripts named

UserStartupTS•

name

.

UserStartupTS

User-defined script that specifies commands to be executed after the

StartupTS

 script is executed. This script can be used to set new
default variables or to change the values of variables set in the

StartupTS

 script.

Scriptname

.err

File created by ToolServer when a script is executed using the Execute
Script menu item and the execution of the

script results in text
written to standard error.

Scriptname

.out

File created by ToolServer when a script is executed using the Execute
Script menu item and the execution of the

script results in text
written to standard ouput.

QuitTS

File executed as part of the quit process. Commands included in this
file search for additional scripts to be run at quit time. Such scripts
must be named

QuitTS•

name

 and be located either in the ToolServer
folder or in the MPW Preferences folder.

By default, ToolServer overwrites the

ToolServer.log

 file each
time it runs, the

QuitTS

 script includes a command which you can
uncomment to save a copy of this file.

ToolServer.log

File created by ToolServer to which messages are directed about
errors that occur during the creation of the output or error files or the
processing of Apple events.

By default, ToolServer overwrites the

ToolServer.log

 file each
time it runs, the

QuitTS

 script includes a command which you can
uncomment to save a copy of this file.

Userstartup•ToolServer

File containing scripts that provide shortcuts in the use of ToolServer
from MPW 3.3.

Dev:Output

ToolServer pseudodevice to which standard output is sent if a script
does not specify a file to which standard output is redirected.

Dev:Error

ToolServer pseudodevice to which standard error is sent if a script
does not specify a file to which diagnostic output is redirected.

Dev:Null

ToolServer pseudodevice to which standard output or standard error
may be redirected. Standard output or standard error information
redirected to this device is then discarded.

A P P E N D I X B

ToolServer Files and Variables

ToolServer Variables

B-3

ToolServer Variables B

The following variables are set in ToolServer’s

StartupTS

 file.

Table B-2

ToolServer variables

Variable Use and default value

BackgroundShell

True for ToolServer.

Boot

The boot disk.

SystemFolder

The directory that contains the System and the Finder.

ShellDirectory

The directory that contains ToolServer.

Status

The result of the last command executed.

User

Automatically defined to the name that appears in the Chooser.

MPW

The volume or folder containing ToolServer. If you place ToolServer
outside this folder, you should redefine this variable to the location of the
ToolServer folder.

Commands

Directories to search for commands. The default setting is

":{MPW}
Tools:, {MPW}Scripts:"

.

PrefsFolder

The directory to search for

UserStartupTS

 and

QuitTS

 scripts: by default

{SystemFolder}Preferences:MPW

. You can change the value in the
Startup file or create an alias named MPW in the preferences folder to
reference the folder where you keep your scripts.

TempFolder

The directory for temporary items. ToolServer may create some temporary
items here. The default value is

"{Boot}Temporary Items"

.

AIncludes

The directories to search for assembly language include files. The default
value is

"{MPW}Interfaces:AIncludes: "

.

Libraries

The directory that contains shared libraries. The default value is

"{MPW}Libraries:Libraries "

.

CIncludes

The directories to search for C include files. The default value is

"{MPW}Interfaces:CIncludes "

.

CLibraries

The directory that contains C libraries. The default value is

"{MPW}Libraries:CLibraries "

.

PInterfaces

The directories to search for Pascal interface files. The default value is

"{MPW}Interfaces:PInterfaces "

.

PLibraries

The directory that contains Pascal libraries. The default value is

"{MPW}Libraries:PLibraries "

.

RIncludes

The directory that contains Rez include files. The default value is

"{MPW}Interfaces:RIncludes "

.

A P P E N D I X B

ToolServer Files and Variables

B-4

ToolServer Variables

WordSet

Character set that defines words for searches and double-clicks. The default
value is

'a-zA-Z_0-9'

.

PrintOptions

Determines the options used by the print tool. The default

-h

 setting, prints
headers containing the name of the file, the page, and the time.

Exit

Determines whether command files terminate after first error: 0 not to
terminate; non-zero to terminate. The default value is 1

.

Echo

Determines whether commands are echoed before execution: 0 not to echo; 0
to echo. The default value is 0.

Test

Determines whether tools and applications are executed: 0 to execute;
non-zero not to execute. The default value is 0.

Table B-2 ToolServer variables (continued)

Variable Use and default value

IN-1

Index

A

Abort event 4-4, 4-9
aborting script execution 2-7, 4-9

'abrt'

event 4-4

'abrt'

Apple event 4-4, 4-9

AIncludes

variable B-3

Alert

 command 2-10
alerts

example of use in scripts 3-11
to monitor script execution 2-10

aliases
synchronizing 3-13

Apple events

'abrt'

event 4-4, 4-9
can't launch ToolServer 4-4
client application 4-2
current directory 4-5

'diag'

event 4-4, 4-8

'dosc'

event 4-4, 4-8
examples of use 4-2
handled by ToolServer 4-2
I/O with 4-5
messages, limitations on 4-6
MPW support for A-1

'oapp'

event 4-4, 4-6

'odoc'

event 4-4, 4-6

'outp'

event 4-4, 4-8

'pdoc'

event 4-4, 4-6
queueing of 4-5

'quit'

event 4-4, 4-7
required events 4-6

'scpt'

event 4-4, 4-7
sending across network 4-2
sending to MPW Shell 4-3
send mode 4-5
server application 4-2

'stat'

event 4-4, 4-9
uniquely identifying 4-7

B

BackgroundErr

 variable 2-9

BackgroundOut

 variable 2-9

BackgroundShell

 variable 2-3

BackgroundShell

variable B-3

Backup

 command 1-3

Boot

variable B-3

C

CIncludes

variable B-3

CLibraries

variable B-3
client application 4-2
command aliases in scripts 2-8

Commands

variable B-3
compatibility 1-3

D

determining context of 2-7

Dev:Error

2-9
using Apple events 4-5

Dev:Error

pseudodevice B-2

Dev:Null

pseudodevice B-2

Dev:Output

2-9
using Apple events 4-5

Dev:Output

pseudodevice B-2

'diag'

Apple event 4-4, 4-8
Diagnostic event 4-4, 4-8
diagnostic output

differences between MPW and ToolServer 2-8

'dosc'

Apple event 4-4, 4-8
Do Script event 4-4, 4-8

E

Echo

variable B-4
error handling

in scripts 2-10

F, G, H

files
as windows 1-3
changed but not saved 1-3
creator of ToolServer 1-3

Thi d t t d ith F M k 4 0 4

I N D E X

IN-2

files

 (continued)

diagnostic 2-8
input 2-8

Log.out

2-10
output 2-8
standard error 2-9
standard output 2-9

StartupTS.err

2-3

StartupTS.out

2-3
synchronizing 1-3

ToolServer.Log

2-10
type of ToolServer 1-3
viewing ToolServer 1-3

I, J, K

input 1-3
differences between MPW and ToolServer 2-8

installing ToolServer 2-2
I/O redirection 2-9

L

launching ToolServer
from MPW 2-3
from the Finder 2-3
methods of 2-2

Libraries

variable B-3

M, N

memory
required by ToolServer 1-2
size of ToolServer partition 1-2

MPW
launching in smaller partition 1-2
support for Apple events A-1

MPW

variable B-3

O

'oapp'

Apple event 4-4, 4-6

'odoc'

Apple event 4-4, 4-6
Open Application event 4-4, 4-6
Open Documents event 4-4, 4-6

'outp'

Apple event 4-4, 4-8

output 1-3
differences between MPW and ToolServer 2-8

'outp'

Apple event 4-4
redirection 3-10

Output event 4-4, 4-8

P

'pdoc'

Apple event 4-4, 4-6
performance

impact on 1-2
running ToolServer on a remote machine 1-3

PInterfaces

variable B-3

PLibraries

variable B-3

PrefsFolder

variable B-3
Print documents event 4-4, 4-6

PrintOptions

variable B-4
pseudodevices 2-9

Dev:Error

2-9

Dev:Output

2-9

Q

'quit'

Apple event 4-4, 4-7
Quit event 4-4
quitting ToolServer 2-5, 4-7

from File menu 2-6

'quit'

event 4-4

QuitTS

file B-2

QuitTS

script 2-10

R

RIncludes

variable B-3

RShell

 command
variable substitution in 3-9

S

'scpt'

Apple event 4-4, 4-7
Script event 4-4, 4-7
script execution

aborting 4-9

'dosc'

event 4-4

'odoc'

event 4-4

'scpt'

event 4-4
status 4-9

I N D E X

IN-3

scripts
abnormal termination 3-10
aborting execution of 2-7
command aliases in 2-8
error handling in 2-8, 2-10
executing by using Apple events 4-5
executing from File menu 2-6
executing using command key 3-13
identifying as ToolServer document 2-2
limitation on contents of 2-7
monitoring execution of 2-10
no I/O redirection 2-9

QuitTS

2-10
running under MPW vs ToolServer 2-10
run under ToolServer 1-3
sample using alerts 2-10
startup 2-3
that execute in the background 3-11
that execute on a remote machine 3-12
use of CPU by 1-3
ways of executing 2-6
writing generic 2-8

server application 4-2

ShellDirectory

variable B-3
standard error 2-9

unable to write to 2-10
standard input

reading from 2-9
standard output 2-9
startup scripts 2-3

StartupTS.err

 file 2-3

StartupTS

 file B-2, B-3

StartupTS.out

 file 2-3

StartupTS script 2-3, 2-4
'stat' Apple event 4-4, 4-9
status

Close Status from File menu 2-6
interpreting status information 3-10
Open status from File menu 2-6
'stat' Apple event 4-4

Status event 4-4, 4-9
Status variable B-3
status window

accessing from File menu 2-6
syntax conventions viii
System 7, dependence of ToolServer on 1-3
SystemFolder variable B-3

T

TempFolder variable B-3
Test variable B-4

ToolServer
Apple events. See Apple events
file type and creator 1-3
in different directory than MPW 2-4
partition for 1-2
signature 1-3
use of on a remote machine 3-12

ToolServer document
defined 2-6
identifying a script as 2-2

ToolServer.log file B-2
ToolServer menus 2-6
ToolServer version 2-6
TraceFailures variable 2-11
transaction ID 3-9

U

Userstartup•ToolServer file B-2
UserStartupTS file B-2
UserStartupTS script 2-3
User variable B-3

V

variables
BackgroundErr 2-9
BackgroundOut 2-9
synchronizing 3-13

W, X, Y, Z

WordSet variable B-4
working directory 2-6

Apple events 4-5
how it's set 2-2

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter II

NTX

 printer.
Line art was created using
Adobe



 Illustrator. PostScript



, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Joanna A. Bujes

EDITORS

Loralee Windsor and Wendy Krafft

ILLUSTRATOR

Dave Olmos

PRODUCTION EDITOR

Teresa Lujan

Special thanks to Judy Ketenhoffen,
Mark Cleveland, Brian Strull,
Keithen Hayenga, and Herb Kanner.

Thi d t t d ith F M k 4 0 4

	ToolServer Reference
	Contents
	Figures, Tables, and Listings
	How to Use This Manual
	Related Documentation
	Syntax Conventions
	Terminology

	Making ToolServer Work for You
	Why Use ToolServer?
	Memory Requirements, Performance, and Compatibility
	ToolServer Partition Size
	Performance
	Compatibility

	Using ToolServer
	Installing ToolServer
	Launching ToolServer
	Launching ToolServer From the Finder
	Launching ToolServer From the MPW Shell
	Startup Scripts
	Moving ToolServer or Its Startup Scripts Out of the ToolServer Folder
	Combining MPW and ToolServer Startup Scripts

	Quitting ToolServer
	Using ToolServer in the Foreground
	Script Execution
	Aborting Script Execution
	Limitations on Scripts That Run Under ToolServer
	Input, Output, and Diagnostic Files
	Using Alerts to Monitor Script Execution

	The RShell Command
	Communicating With ToolServer on a Remote Machine
	Using Files on the Local Machine

	Using the RShell Command
	Command Syntax
	Examples
	Variable Substitution in the RShell Command Line
	Transaction ID of a Request
	Redirecting Output and Abnormal Termination

	Sample Scripts
	A Script That Compiles in the Background
	A Script That Compiles on a Remote Machine

	Shortcuts

	Using Apple Events to Communicate With ToolServer
	ToolServer as a Server Application
	Executing a Script by Using Apple Events
	I/ O With Apple Events
	Required Events
	Open Application Event
	Open Documents Event
	Print Documents Event
	Quit Event

	Script Events
	Script and Do Script Events
	Output and Diagnostic Output Events
	Abort Event
	Status Event

	Apple Event Support in the MPW Shell
	ToolServer Files and Variables
	ToolServer Files
	ToolServer Variables

	Index

